skip to main content


Search for: All records

Creators/Authors contains: "Barbero, Leticia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The ocean carbonate system is critical to monitor because it plays a major role in regulating Earth's climate and marine ecosystems. It is monitored using a variety of measurements, and it is commonly understood that all components of seawater carbonate chemistry can be calculated when at least two carbonate system variables are measured. However, several recent studies have highlighted systematic discrepancies between calculated and directly measured carbonate chemistry variables and these discrepancies have large implications for efforts to measure and quantify the changing ocean carbon cycle. Given this, the Ocean Carbonate System Intercomparison Forum (OCSIF) was formed as a working group through the Ocean Carbon and Biogeochemistry program to coordinate and recommend research to quantify and/or reduce uncertainties and disagreements in measurable seawater carbonate system measurements and calculations, identify unknown or overlooked sources of these uncertainties, and provide recommendations for making progress on community efforts despite these uncertainties. With this paper we aim to (1) summarize recent progress toward quantifying and reducing carbonate system uncertainties; (2) advocate for research to further reduce and better quantify carbonate system measurement uncertainties; (3) present a small amount of new data, metadata, and analysis related to uncertainties in carbonate system measurements; and (4) restate and explain the rationales behind several OCSIF recommendations. We focus on open ocean carbonate chemistry, and caution that the considerations we discuss become further complicated in coastal, estuarine, and sedimentary environments.

     
    more » « less
  2. Abstract

    Detailed descriptions of microbial communities have lagged far behind physical and chemical measurements in the marine environment. Here, we present 971 globally distributed surface ocean metagenomes collected at high spatio-temporal resolution. Our low-cost metagenomic sequencing protocol produced 3.65 terabases of data, where the median number of base pairs per sample was 3.41 billion. The median distance between sampling stations was 26 km. The metagenomic libraries described here were collected as a part of a biological initiative for the Global Ocean Ship-based Hydrographic Investigations Program, or “Bio-GO-SHIP.” One of the primary aims of GO-SHIP is to produce high spatial and vertical resolution measurements of key state variables to directly quantify climate change impacts on ocean environments. By similarly collecting marine metagenomes at high spatiotemporal resolution, we expect that this dataset will help answer questions about the link between microbial communities and biogeochemical fluxes in a changing ocean.

     
    more » « less
  3. Effective data management plays a key role in oceanographic research as cruise-based data, collected from different laboratories and expeditions, are commonly compiled to investigate regional to global oceanographic processes. Here we describe new and updated best practice data standards for discrete chemical oceanographic observations, specifically those dealing with column header abbreviations, quality control flags, missing value indicators, and standardized calculation of certain properties. These data standards have been developed with the goals of improving the current practices of the scientific community and promoting their international usage. These guidelines are intended to standardize data files for data sharing and submission into permanent archives. They will facilitate future quality control and synthesis efforts and lead to better data interpretation. In turn, this will promote research in ocean biogeochemistry, such as studies of carbon cycling and ocean acidification, on regional to global scales. These best practice standards are not mandatory. Agencies, institutes, universities, or research vessels can continue using different data standards if it is important for them to maintain historical consistency. However, it is hoped that they will be adopted as widely as possible to facilitate consistency and to achieve the goals stated above. 
    more » « less
  4. null (Ed.)
    Abstract. Internally consistent, quality-controlled (QC) data products play animportant role in promoting regional-to-global research efforts tounderstand societal vulnerabilities to ocean acidification (OA). However,there are currently no such data products for the coastal ocean, where mostof the OA-susceptible commercial and recreational fisheries and aquacultureindustries are located. In this collaborative effort, we compiled, quality-controlled, and synthesized 2 decades of discrete measurements ofinorganic carbon system parameters, oxygen, and nutrient chemistry data fromthe North American continental shelves to generate a data product calledthe Coastal Ocean Data Analysis Product in North America (CODAP-NA). Thereare few deep-water (> 1500 m) sampling locations in the currentdata product. As a result, crossover analyses, which rely on comparisonsbetween measurements on different cruises in the stable deep ocean, couldnot form the basis for cruise-to-cruise adjustments. For this reason, carewas taken in the selection of data sets to include in this initial releaseof CODAP-NA, and only data sets from laboratories with known qualityassurance practices were included. New consistency checks and outlierdetections were used to QC the data. Future releases of this CODAP-NAproduct will use this core data product as the basis for cruise-to-cruisecomparisons. We worked closely with the investigators who collected andmeasured these data during the QC process. This version (v2021) of theCODAP-NA is comprised of 3391 oceanographic profiles from 61 researchcruises covering all continental shelves of North America, from Alaska toMexico in the west and from Canada to the Caribbean in the east. Data for 14variables (temperature; salinity; dissolved oxygen content; dissolvedinorganic carbon content; total alkalinity; pH on total scale; carbonateion content; fugacity of carbon dioxide; and substance contents of silicate,phosphate, nitrate, nitrite, nitrate plus nitrite, and ammonium) have beensubjected to extensive QC. CODAP-NA is available as a merged data product(Excel, CSV, MATLAB, and NetCDF; https://doi.org/10.25921/531n-c230,https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0219960.html, last access: 15 May 2021)(Jiang et al., 2021a). The original cruise data have also been updated withdata providers' consent and summarized in a table with links to NOAA'sNational Centers for Environmental Information (NCEI) archives(https://www.ncei.noaa.gov/access/ocean-acidification-data-stewardship-oads/synthesis/NAcruises.html). 
    more » « less
  5. Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions andtheir redistribution among the atmosphere, ocean, and terrestrial biosphere– the “global carbon budget” – is important to better understand theglobal carbon cycle, support the development of climate policies, andproject future climate change. Here we describe data sets and methodology toquantify the five major components of the global carbon budget and theiruncertainties. Fossil CO2 emissions (EFF) are based on energystatistics and cement production data, while emissions from land use change(ELUC), mainly deforestation, are based on land use and land use changedata and bookkeeping models. Atmospheric CO2 concentration is measureddirectly and its growth rate (GATM) is computed from the annual changesin concentration. The ocean CO2 sink (SOCEAN) and terrestrialCO2 sink (SLAND) are estimated with global process modelsconstrained by observations. The resulting carbon budget imbalance(BIM), the difference between the estimated total emissions and theestimated changes in the atmosphere, ocean, and terrestrial biosphere, is ameasure of imperfect data and understanding of the contemporary carboncycle. All uncertainties are reported as ±1σ. For the lastdecade available (2009–2018), EFF was 9.5±0.5 GtC yr−1,ELUC 1.5±0.7 GtC yr−1, GATM 4.9±0.02 GtC yr−1 (2.3±0.01 ppm yr−1), SOCEAN 2.5±0.6 GtC yr−1, and SLAND 3.2±0.6 GtC yr−1, with a budgetimbalance BIM of 0.4 GtC yr−1 indicating overestimated emissionsand/or underestimated sinks. For the year 2018 alone, the growth in EFF wasabout 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr−1, reaching 10 GtC yr−1 for the first time in history,ELUC was 1.5±0.7 GtC yr−1, for total anthropogenicCO2 emissions of 11.5±0.9 GtC yr−1 (42.5±3.3 GtCO2). Also for 2018, GATM was 5.1±0.2 GtC yr−1 (2.4±0.1 ppm yr−1), SOCEAN was 2.6±0.6 GtC yr−1, and SLAND was 3.5±0.7 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of−0.2 % to 1.5 %) based on national emissions projections for China, theUSA, the EU, and India and projections of gross domestic product correctedfor recent changes in the carbon intensity of the economy for the rest ofthe world. Overall, the mean and trend in the five components of the globalcarbon budget are consistently estimated over the period 1959–2018, butdiscrepancies of up to 1 GtC yr−1 persist for the representation ofsemi-decadal variability in CO2 fluxes. A detailed comparison amongindividual estimates and the introduction of a broad range of observationsshows (1) no consensus in the mean and trend in land use change emissionsover the last decade, (2) a persistent low agreement between the differentmethods on the magnitude of the land CO2 flux in the northernextra-tropics, and (3) an apparent underestimation of the CO2variability by ocean models outside the tropics. This living data updatedocuments changes in the methods and data sets used in this new globalcarbon budget and the progress in understanding of the global carbon cyclecompared with previous publications of this data set (Le Quéré etal., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated bythis work are available at https://doi.org/10.18160/gcp-2019 (Friedlingsteinet al., 2019). 
    more » « less
  6. Abstract. Accurate assessment of anthropogenic carbon dioxide(CO2) emissions and their redistribution among the atmosphere,ocean, and terrestrial biosphere – the “global carbon budget” – isimportant to better understand the global carbon cycle, support thedevelopment of climate policies, and project future climate change. Here wedescribe data sets and methodology to quantify the five major components ofthe global carbon budget and their uncertainties. Fossil CO2emissions (EFF) are based on energy statistics and cementproduction data, while emissions from land use and land-use change (ELUC),mainly deforestation, are based on land use and land-use change data andbookkeeping models. Atmospheric CO2 concentration is measureddirectly and its growth rate (GATM) is computed from the annualchanges in concentration. The ocean CO2 sink (SOCEAN)and terrestrial CO2 sink (SLAND) are estimated withglobal process models constrained by observations. The resulting carbonbudget imbalance (BIM), the difference between the estimatedtotal emissions and the estimated changes in the atmosphere, ocean, andterrestrial biosphere, is a measure of imperfect data and understanding ofthe contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2008–2017), EFF was9.4±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.7±0.02 GtC yr−1,SOCEAN 2.4±0.5 GtC yr−1, and SLAND 3.2±0.8 GtC yr−1, with a budget imbalance BIM of0.5 GtC yr−1 indicating overestimated emissions and/or underestimatedsinks. For the year 2017 alone, the growth in EFF was about 1.6 %and emissions increased to 9.9±0.5 GtC yr−1. Also for 2017,ELUC was 1.4±0.7 GtC yr−1, GATM was 4.6±0.2 GtC yr−1, SOCEAN was 2.5±0.5 GtC yr−1, and SLAND was 3.8±0.8 GtC yr−1,with a BIM of 0.3 GtC. The global atmosphericCO2 concentration reached 405.0±0.1 ppm averaged over 2017.For 2018, preliminary data for the first 6–9 months indicate a renewedgrowth in EFF of +2.7 % (range of 1.8 % to 3.7 %) basedon national emission projections for China, the US, the EU, and India andprojections of gross domestic product corrected for recent changes in thecarbon intensity of the economy for the rest of the world. The analysispresented here shows that the mean and trend in the five components of theglobal carbon budget are consistently estimated over the period of 1959–2017,but discrepancies of up to 1 GtC yr−1 persist for the representationof semi-decadal variability in CO2 fluxes. A detailed comparisonamong individual estimates and the introduction of a broad range ofobservations show (1) no consensus in the mean and trend in land-use changeemissions, (2) a persistent low agreement among the different methods onthe magnitude of the land CO2 flux in the northern extra-tropics,and (3) an apparent underestimation of the CO2 variability by oceanmodels, originating outside the tropics. This living data update documentschanges in the methods and data sets used in this new global carbon budgetand the progress in understanding the global carbon cycle compared withprevious publications of this data set (Le Quéré et al., 2018, 2016,2015a, b, 2014, 2013). All results presented here can be downloaded fromhttps://doi.org/10.18160/GCP-2018. 
    more » « less